S. Student, PhD

123 Oak St. • Charlottesville, VA 22902 • 123 456 7890 • S. Student@virginia.com

QUALIFICATIONS

- Scientist with 6+ years of experience in biophysical characterization and 4+ years in structural biology and formulation.
- Extensive experience in high-throughput biophysical assay development.
- Exceptional communication and written skills.
- Proficient at managing multiple projects and collaborating well with others.

INDUSTRY RESEARCH EXPERIENCE

Scientist, Novartis Vaccines & Diagnostics, Holly Springs, NC

Global Technology Development (Exploratory Vaccines)

Biochemist, Merck & Co., West Point, PA

Bioprocess Analytical Formulation Sciences Dept. Selected Accomplishments

- Defined an area of open communication between Pre-Clinical Development and Biologics Basic Research serving as the biophysical characterization resource.
- Optimized and developed high throughput characterization techniques aimed at identifying therapeutic proteins with superior chemical and physical stability.
- Characterized formulations that provided long term stability and screened for excipients that provided acceptable cryoprotection during lyophilization.
- Involved in technology transfer from the lead identification stage to pre-clinical development.
- Managed multiple projects on tight deadlines covering diverse areas.
- Considered project specific requirements such as, stability, deliverability, dosing convenience, potency, and efficacy; required for a competitive, desirable, and cost effective treatment.
- Presented data at numerous interdepartmental meetings in effort to improve cross-communication within the company at different levels.
- Determined critical physical conditions affecting subcutaneous delivery of protein solutions resulting in a peer-reviewed publication.
- SOP-coordinator and editor

Chemical Analyst, Element One, Inc., Wilmington, NC

EPA Certified Waste/Drinking Water and Air Dept.

Selected Accomplishments

- Engaged and negotiated with clients to establish long-term relationships aimed at providing efficient, cost effective, confidential, analytical, and consulting services.
- Conceptualized and developed an EPA certified temperature monitoring system compatible for various experimental conditions and sample storage.

EDUCATION

Ph.D., Biophysics, University of Virginia, Charlottesville, VA	2013
Dissertation: xxx xxx xxx	
M.S., Chemistry, University of North Carolina Wilmington	2007
Thesis: xxx xxx xxx	
B.S., Chemistry, Concentration in biochemistry, Minor in mathematics University of North Carolina Wilmington	2005
Xxx xxxx xxx	

2013 – Present

2007 - 2009

2004 - 2005

2

I ECHINICAL EXPERTISE		
Formulation/Pre-formulation techniques:	Low volume high-throughput thermal and physical stability pre-screening. Rheometry studies to optimize syringeabity through formulation design and TP candidate selection.	
Protein Expression & Purification:	Lyophilization screens to improve reconstitution times and decrease sample viscosity. Molecular Cloning (DNA, PCR); Recombinant protein engineering; Site-directed Mutagenesis; FPLC-IEX, SEC; Membrane Protein expression and purification; Virus	
Protein Characterization:	Homonuclear, Multinuclear, and Multidimensional NMR Spectroscopy; Automated electrophoresis; HPLC – SEC/MALS, RP, IEX, HIC; Capillary Isoelectric Focusing (IEF); UV-Vis Spectroscopy; FRET, Steady-state & Stopped flow Fluorescence Spectroscopy; DSC/DSF: ITC: DLS: CD: SPR-Biacore.	
Membrane Mimetics:	Preparation of - single supported bilayers (Langmiur Blodgett technique), large and small unilamellar vesicles, nanodiscs, bicelles, and detergent micelles.	
Technical Competencies:	Windows, Macintosh, and Linux Red Hat OS Platforms; Bruker (TOPSPIN) and Varian (VnmrJ) NMR Spectrometers; NMRpipe; SPARKY; PyMOL; AKTA (UNICORN) FPLC Systems, Waters HPLC Systems.	

ACADEMIC RESEARCH EXPERIENCE

Ph.D. Candidate - Graduate Assistant, University of Virginia, Charlottesville, VA

Principle Investigator: Professor X.

Project Title: Structural and Functional Studies of the Internal Fusion Loop of Ebolavirus Glycoprotein 2 *Selected Accomplishments*

- Successfully determined three high-resolution NMR structures of the internal fusion loop peptide from Ebolavirus GP2.
- Established a critical high throughput screening assay to efficiently determine fusion peptide activity.
- Initiated collaborations to obtain biological data and molecular dynamics information to supplement structural and biophysical findings of Ebolavirus fusion machinery.
- Revised and improved protocols for expression, purification, and refolding of the disulfide bonded internal fusion loop, resulting in increased yield of purified proteins.
- Defined stable long term storage conditions for proteins through freeze-thaw and lyophilization stability studies.

Research Assistant, University of North Carolina Wilmington

Principle Investigator: Professor X.

Project Title: Kinetic Study of Peptide–Membrane Interactions for Antimicrobial Peptides Cecropin A and Magainin-2 *Selected Accomplishments*

- Worked with in-house FORTRAN code programs to globally fit experimental kinetic data with independently determined association and dissociation parameters to describe peptide-liposome interactions.
- Contributed a novel and elegant model describing the actions of Cecropin A and Mgainin-2 with synthetic lipid vesicles.
- Successfully wrote and defended a Master's thesis in 2 years while producing 2 peer-reviewed published articles.

Teaching Assistant, University of North Carolina Wilmington

General Chemistry Labs 101 and 102

Selected Accomplishments

- Customized and facilitated labs for teaching general chemistry techniques and principles to undergraduate students. Worked
 one-on-one with individuals and in a group setting to ensure that material was well understood by all students.
- Managed time among teaching and grading responsibilities, course work, and research to ensure students received performance feedback in a time effective manner.

LECTURES

BIOP/PHY 8401 Structural biology of membrane proteins **2012**. Structure and function of biological membranes – Examples of membrane protein structure solutions.

2005 - 2007

2009 - Present

2005 – 2007

MENTORING AND LEADERSHIP

Recruiting and Academic Events Coordinator, University of Virginia Biomedical Sciences	2009-Present
Directly involved in student recruiting and orientation events for students interested in studying Biophysics at UVA	
Vice President, Graduate Biosciences Organization	2011-2012
Planned, organized and supervised the 20th annual GBS symposium	
Mentor, Merck & Co. Co-op/internship program	2007-2009
Supervised and guided three undergraduate students working in Merck & Co. labs through company research projects.	
Assisted with scientific guidance, writing, and presentation skills.	

AWARDS AND FUNDING

University of Virginia, Outstanding Student in Biophysics	2013
57th Biophysical Society Meeting, Invited Speaker, Platform-Membrane Protein Structure and Function	2013
National Science Foundation, Travel Fellowship Award Molecular Biophysics of Membranes, Snowmass Village, CO	2012
National Institutes of Health, Biophysics Training Grant # 1 111 1111	2010-2012
Biophysics SRAA, Poster Competition Finalist 55th Biophysical Society Meeting, Baltimore, MD	2011
Biophysical Society, New and Notable Review	2008
Axelsen P.H. A Chaotic Pore Model of Polypeptide Antibiotic Action. Biophys J. 94:1549-1550.	
University of North Carolina Wilmington, Undergraduate Research Fellowship	2004

PUBLICATIONS

- Student S., Larsson, P., Nelson, L.A., Kasson, P.M., White, J.M., Tamm, L.K. Ebolavirus Entry Requires a Compact Hydrophobic Fist at the Tip of the Fusion Loop. 2013 Submitted.
- Arvinte, T., Palais, C., Green-Trexler, E., **Student S**, Mach, H., Narashimhan, C., Shameem, M. Aggregation of Biopharmaceuticals in Human Plasma and Human Serum: Implications for Drug Research and Development. *mAbs.* **2013** May/Jun; 5(3):1-10.
- Smith, E.C., Student S., Tamm, L.K., Creamer, T.P., Dutch, E.D. Role of Sequence and Structure of the Hendra Fusion Protein Fusion Peptide in Membrane Fusion. *J Biol Chem.* 2012 Aug; 287(35):30035-48.
- Student S., Harada, E, Liang, B., Delos, S.E., White, J.M., Tamm, L.K. Structure and Function of the Complete Internal Fusion Loop from Ebolavirus Glycoprotein 2. *Proc Natl Acad Sci U S A.* 2011 Jul; 108(27):11211-6.
- Mach, H., Student S., Mittal, S., Lalloo, A., Kirchmeier, M., Shameem, M. Electrostatic interactions of monoclonal antibodies with subcutaneous tissue, *Ther Deliv.* 2011 Jun; 2(6):727-36.
- Student S., Pokorny, A., and Almeida, P.F.F. Magainin 2 Revisited: a Test of the Quantitative Model for the All-or-None Permeabilization of Phospholipid Vesicles. *Biophys J.* 2009 Jan; 96(1):116-31.
- Student S., Cavenaugh A., Journigan V., Pokorny A., Almeida P.F.F. A Quantitative Model for the All-or-None Permeabilization of Phospholipid Vesicles by Antimicrobial Peptide Cecropin A. *Biophys J.* 2008 Mar; 94(5):1667-80.

PRESENTATIONS

- Speaker, 21st Annual Graduate Biosciences Symposium, **2013**. *The Role of Hydrophobic Residues in the Internal Fusion Loop from Ebolavirus GP2.*
- Speaker, 57th Annual Biophysical Society Meeting, **2013**. Inhibition of Ebolavirus Entry Through Biophysical Identification of Functionally Important Residues in the GP2 Fusion Loop.
- Speaker, UVA Undergraduate Summer Research Internship Program, 2012, How Does the Fusion Loop of Ebolavirus Interact with Membranes?

S. Student@virginia.com

- FASEB Molecular Biophysics of Membranes, 2012. Identification of Key Residues Involved in Membrane Disruption by the Ebolavirus Internal Fusion Loop. 24-Pos
- Speaker, UVA Center for Membrane Biology seminar series, 2012. Structural and functional studies of the Ebolavirus Internal Fusion Loop.
- Invited Speaker, James Madison University: VABio Student Chapter, 2011. Structure and Function of the Ebolavirus Fusion Loop.
- 55th Annual Biophysical Society Meeting, 2011. Structure and Function of the Fusion Loop from Ebolavirus GP2. 3424-Pos
- 53rd Annual Biophysical Society Meeting, **2009**. *Magainin 2 Revisited: a Test of the Quantitative Model for All-or-None Permeabilization of Phospholipid Vesicles*. 805-Pos
- 51st Annual Biophysical Society Meeting, 2007. Study of Dye Efflux Kinetics Induced by Cecropin A. 333-Pos
- 14th Annual Carolinas Society of Environmental Toxicology and Chemistry Meeting, **2005**. Assessing the Health of Regional Marinas by Measuring the Lysosomal Stability of Deployed Atlantic Ribbed Mussels, Geukensia demissa. 10-Pos

PATENTS

- U.S. Patent # 8188234, 1D05 PCSK9 antagonists Antagonists of human proprotein convertase subtilisin-kexin type 9, Merck & Co., Inc. issued May 2012
- U.S. Patent # 8188233, 1B20 PCSK9 antagonists Antagonists of human proprotein convertase subtilisin-kexin type 9, Merck & Co., Inc. issued May 2012